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Numerical simulations of transonic aerodynamic �ows based
on a hierarchical formulation
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SUMMARY

In this paper, steady two-dimensional potential �ows over airfoils are calculated with and without
entropy and vorticity corrections, due to the presence of shock waves and=or laminar boundary layers.
The results are in agreement with the corresponding solutions of Euler and Navier–Stokes equations.
The present approach is brie�y described and some extensions are discussed. Copyright ? 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The breakthrough of Murman and Cole in 1971 opened the door for a �ood of papers on
transonic �ow simulations. Small disturbance equation was used as a model featuring the nec-
essary non-linearity and the mixed type nature of transonic �ows with shocks. Later, Murman
introduced a conservative scheme to capture correctly embedded and bow shocks. Moreover,
Engquist and Osher constructed a scheme satisfying a generalized entropy condition on the
discrete level. Extensions to the solution of the full potential equation followed by Jameson
and others for two and three-dimensional �ows. For a comprehensive review of these de-
velopments see References [1, 2]. The type dependent discretization schemes and relaxation
procedures introduced for the solution of the potential equation had some advantages in terms
of accuracy and e�ciency compared to the solution of Euler equations at that time, where the
unsteady hyperbolic equations with arti�cial viscosity terms added everywhere in the �eld,
were solved explicitly to reach a steady state solution. During the eighties there were intensive
e�orts to improve the solution procedures of Euler equations, as a prerequisite to the solu-
tion of Navier–Stokes equations for the high Reynolds number �ows. Implicit schemes intro-
duced by Beam and Warming, MacCormack and Lerat improved the e�ciency of calculations.
Local time stepping, residual smoothing and multigrid as well as preconditioning techniques
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Figure 1. Cp contours (potential �ow, M∞=0:86, �=0◦).

Figure 2. Cp contours (rotational �ow, M∞=0:86, �=0◦).
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Figure 3. Cp on the surface (M∞=0:86, �=0◦) (Euler results from Reference [9]).

and GMRES are used for convergence acceleration. Fourth order dissipation was introduced
early by Kreiss for the solution of hyperbolic equations with smooth solutions. Blending
second and fourth order dissipation terms of a �nite volume formulation was introduced by
MacCormack and used also by Jameson, Turkel and Schmit with methods of lines based on
a multistage Runge–Kutta time integration method. The use of limiters and TVD schemes en-
hanced the calculations further. On the other hand, Godunov type schemes based on the exact
and approximate solutions of the exact and approximate Riemann problems were developed by
van Leer, Roe and Osher. Later, high resolution schemes and essentially non-oscillatory
schemes were introduced by Harten and others. For more details see [1]. The recent mul-
tidimensional upwinding and �uctuations splitting schemes are also promising [3]. Both block
structured and unstructured grids were used in �ow simulations based on Euler equations over
complex geometries. Recently, �nite elements methods become competitive to �nite volumes,
see for example Morgan et al. [4]. The �rst transonic �ow simulation over a complete air-
plane was accomplished by Glowinski et al. based on a control theory formulation of potential
�ow. For more details see References [5, 6]. Most of the Euler schemes discussed here, have
been used for the solution of Navier–Stokes equations, starting with Lax–Wandro� schemes,
MacCormack explicit and implicit schemes including the bidiagonal scheme, the line relax-
ation and the recent symmetric schemes, Jameson’s method of lines with scalar and matrix
dissipation and Beam and Warming ADI scheme, Lerat implicit schemes, as well as, upwind
schemes, in particular Roe �ux di�erence splitting for the discretization of the convection
terms. Similarly, �nite elements have been used for the simulation of high Reynolds number
viscous �ows with structured grids in the boundary layers and the wakes and unstructured grids
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Figure 4. Cp on the surface (M∞=0:85, �=1◦).

in the inviscid �ow regions. Potential, Euler and Navier–Stokes codes have been successfully
used in industry. Nevertheless, there is still a need for more developments as described by a
recent paper by Johnson et al. [7]. In the present paper, we will present numerical results for
2-D transonic �ows over airfoils based on a hierarchical approach using a potential formula-
tion with corrections due to entropy and vorticity generated by curved shocks and=or viscous
layers. The motivation behind the present approach is to exploit the fact that entropy and
vorticity are con�ned to relatively small domains for most external aerodynamic �ows, even
at o� design conditions. The base calculations are produced using a potential solver based
on �ux upwinding [8]. The modi�cations to account for entropy and vorticity variations are
introduced to satisfy the momentum equations. In the following, the details of the formulation
for inviscid and viscous �ows are derived and the numerical methods are described followed
by a discussion of the results.

2. A HIERARCHICAL FORMULATION FOR INVISCID ADIABATIC FLOWS

Ignoring viscous e�ects and heat transfer, Navier–Stokes equations reduce to Euler equations
representing conservation of mass, momentum and energy. For steady two dimensional �ows,
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Figure 5. Cp contours (potential �ow, M∞=0:85, �=1◦).

Figure 6. Cp contours (rotational �ow, M∞=0:85, �=1◦).
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Figure 7. Cp contours (potential �ow, M∞=1:4, �=0◦).

Figure 8. Cp contours (rotational �ow, M∞=1:4, �=0◦).
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Figure 9. Cp contours (potential �ow, M∞=1:4, �=4◦).

Figure 10. Cp contours (rotational �ow, M∞=1:4, �=4◦).
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Figure 11. Cp on the surface (M∞=1:4, �=0◦).

the governing equations for a perfect gas, in standard notations, are given by

∇ ·�q=0 (1)

∇ ·�qq=−∇P (2)

∇ ·�qH =0 (3)

where H is the total enthalpy

H =
�

� − 1
p
�
+
1
2
q2 (4)

For uniform upstream conditions and excluding closed streamlines, Equation (3) implies that
H is uniformly constant everywhere in the �eld. For the case of variable upstream conditions,
for example gust, H remains constant along a streamline, but it varies from one streamline
to another. For smooth �ows, the momentum equations can be rewritten in the Lamb form:

!× q=T∇S − ∇H (5)

Equation (5) implies that, the entropy, S, is constant along a streamline ( = constant).
However, S jumps across shocks. Equation (5) implies also that the vorticity is related to the
gradient of entropy and total enthalpy normal to the streamline direction. For two-dimensional
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Figure 12. Cp on the surface (M∞=1:4, �=4◦).

Figure 13. Mach contours (M∞=0:8, Re=500, �=0◦).

�ows equation (5) reduces to

!=P
@S=R
@ 

− �
@H
@ 

(6)
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Figure 14. Mach contours (M∞=0:8, Re=500, �=10◦).

Figure 15. Cp contours (M∞=0:8, Re=500, �=0◦).

Hence, for constant total enthalpy, !=P is constant along a streamline, while !=� is constant
along a streamline for constant entropy, i.e. isentropic �ow. For regions where both H and
S are constant the vorticity vanishes, i.e. the �ow is irrotational. This is the case in the far
�eld, excluding the wake, of most external aerodynamics �ows. To take advantage of this
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NUMERICAL SIMULATIONS OF TRANSONIC AERODYNAMIC FLOWS 501

Figure 16. Cp contours (M∞=0:8, Re=500, �=10◦).
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Figure 17. Cp on the surface (M∞=0:8, Re=500, �=0◦)
(Navier–Stokes results from Reference [10]).
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Figure 18. Cp on the surface (M∞=0:8, Re=500, �=10◦)
(Navier–Stokes results from Reference [10]).

Figure 19. Mach contours (M∞=0:9, Re=500, �=0◦).
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Figure 20. Mach contours (M∞=0:9, Re=500, �=10◦).

Figure 21. Cp contours (M∞=0:9, Re=500, �=0◦).

fact, several formulations, in terms of vorticity, have been proposed in the past. In References
[9–12] generalized Cauchy=Riemann equations were solved assuming entropy and vorticity are
known. The latter are updated to satisfy the tangential and normal momentum equations. See
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Figure 22. Cp contours (M∞=0:9, Re=500, �=10◦).
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Figure 23. Cp on the surface (M∞=0:9, Re=500, �=0◦)
(Navier–Stokes results from Reference [10]).
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Figure 24. Cp on the surface (M∞=0:9, Re=500, �=10◦)
(Navier–Stokes results from Reference [10]).

Figure 25. Mach contours (M∞=0:85, Re=2000, �=0◦).

also the work of Johnson et al. [13]. The present work depends on a velocity decomposition
similar to that introduced by Helmholtz. Other options are also possible. For example, in
Reference [14] a multiplicative correction to the gradient of the potential is used instead.
Here the velocity vector is split into a gradient of a potential plus a rotational component,
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Figure 26. Cp contours (M∞=0:85, Re=2000, �=0◦).
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Figure 27. Cp on the surface (M∞=0:85, Re=2000, �=0◦)
(Navier–Stokes results from Reference [30]).
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Figure 28. Mach contours (M∞=0:5, Re=10 000, �=0◦).

Figure 29. Cp contours (M∞=0:5, Re=10 000, �=0◦).

namely

q=∇�+ q∗ (7)

Hence,

!=∇ × q=∇ × q∗ (8)

The continuity equation becomes

∇ ·�∇�= − ∇ ·�q∗ (9)
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Figure 30. Cp on the surface (M∞=0:5, Re=10 000, �=0◦)
(Navier–Stokes results from Reference [31]).

Figure 31. Mach contours (M∞=1:5, Re=1× 104, �=0◦).
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Figure 32. Cp contours (M∞=1:5, Re=1× 104, �=0◦).
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Figure 33. Cp at the axis (M∞=1:5, Re=1× 104, �=0◦).
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Figure 34. Cf on the body (M∞=1:5, Re=1× 104, �=0◦).

The right hand side of Equation (9) is a source term to account for the contribution of the
rotational velocity component to the conservation of mass. The energy equation is represented
by the statement

H =H∞=
1

� − 1
1

M 2∞
+
1
2

(10)

where the velocity has been made dimensionless based on q∞ and the total enthalpy based
on q2∞. The pressure and the density of non-isentropic �ows can be represented by

P=Pie−�S=R; �=�ie−�S=R; Pi=
��
i

�M 2∞
(11)

Hence,

�
� − 1

Pi

�i
+
1
2
q2 =H∞ (12)

Equation (12) provides �i and Pi in terms of q2. To complete the formulation, we need the
entropy S and the rotational component of the velocity q∗. For two-dimensional �ows, the vor-
ticity vector is normal to the plane, hence only its magnitude is unknown. Therefore, the mag-
nitude of q∗, or one of its components, can be obtained by integrating the vorticity de�nition
given by Equation (8). The vorticity and the entropy can be obtained from the momentum
equations. Speci�cally, a combination of the x- and y-momentum equations in either the �ow
direction or in a direction tangent to grid lines (if the grid is almost aligned with the �ow)
is used to calculate the entropy correction, while the correction to the magnitude of q∗, or
its components is calculated to enforce another combination of the momentum equations in
a direction normal to the �ow direction. For unstructured grids, one can use the direction of
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the pseudo potential �ow and its normal, to calculate the above-mentioned corrections. The
present formulation is completely equivalent to Euler equations. It includes potential �ow as
a special case, if entropy terms and the rotational component of the velocity are dropped. We
can also include only the entropy corrections and ignore the vorticity, if the shock curvature
is negligible [15, 16]. The isentropic Euler equations can be also obtained if the pressure is
calculated from the normal momentum equations and the rotational component of the velocity
from the tangential momentum equation while the energy equation is replaced by the isen-
tropic relation, which in turn, provides the density. All these levels of approximations are
subsets or special cases, which can be valid locally in some regions of the �ow �eld. The
main point here is the use of the potential �ow as a base for the calculations with local
corrections, not necessarily small in magnitude, but limited to relatively small domains. Exact
integration of the momentum and energy equations avoids generation of arti�cial entropy and
vorticity from truncation errors particularly on coarse meshes, unless special schemes are de-
veloped to preserve these quantities. Even then, one must detect where to apply such schemes,
since entropy should be generated from shock waves and a scheme which preserves entropy
everywhere is good only for �ows without shocks. Schemes which conserve automatically
potential �ows are developed in Reference [17].

3. A HIERARCHICAL FORMULATION FOR VISCOUS FLOW WITH HEAT
CONDUCTION

There have been many attempts to simulate viscous �ows at high Reynolds numbers based
on viscous=inviscid interaction procedures. The �rst was proposed by Prandtl, coupling po-
tential �ows with boundary layers using the concept of displacement thickness, such that at
each station on the airfoil the inviscid mass �ow rate over the displaced body is equal to
the viscous mass �ow rate over the original body. The inviscid �ow calculation, in turn,
over the augmented body provides the surface pressure gradient in the streamwise direction,
which is imposed as a forcing function in the tangential momentum equation of the boundary
layer calculations. The coupling between the potential �ows and boundary layers is crucial
for the overall convergence of any iterative procedure to solve the combined problem. It is
di�cult, however, to construct a robust procedure for attached and separated �ows in both sub
and supersonic regions [18–23]. Other di�culties exist with boundary layer approximations,
at least from theoretical point of view, at the leading and trailing edges and at separation
and attachment points. Moreover, extensions to three-dimensional �ows over wings are not
straightforward, in particular at the tips and wing-body junctions. Because of all these issues,
zonal methods were introduced where Navier–Stokes equations are solved in the neighbour-
hood of the body and in the wake and Euler or potential equations are solved outside the
viscous layers, as in heterogeneous domain decomposition methods [24–26]. Again, conver-
gence di�culties are usually encountered due to the re�ection of the error from the arti�cial
interface between the two regions where di�erent equations are solved [27, 28]. Some of these
problems are avoided in our hierarchical formulation, which is equivalent to Navier–Stokes
equations. The Navier–Stokes equations, for steady laminar �ows of a perfect gas, are:

∇ ·�q = 0 (13)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:491–516
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∇ ·�qq = −∇P +
1
Re

∇ · � (14)

∇ ·�qH =
1

Re Pr
∇ · k∇T +

1
Re

∇ · q · � (15)

where � is the viscous stress tensor and k is the non-dimensional heat conductivity of the �uid.
The two parameters in the energy equations are the Reynolds (Re) and Prandtl (Pr) numbers.
For high Reynolds number �ows, the viscous stresses and the heat transfer are con�ned to
the boundary layers and wakes. Outside these regions, Euler equations are valid, where the
total enthalpy is constant with uniform upstream conditions. On the other hand, inside the
boundary layers and the wake, the total enthalpy can be considered constant if Pr=1 [10].
Hence, one can use constant total enthalpy for high Reynolds number �ows everywhere, even
inside the viscous layers. For convenience, we will replace Equation (15) by Equation (10).

H =CpT +
1
2
q2 =H∞=

1
� − 1

1
M 2∞

+
1
2

(16)

Such an approximation implies that the body surface temperature is constant and there is
no heat transfer through the body surface (i.e. @T=@n=0). In general, Equation (15) must be
solved for H . As in inviscid �ows, the same decomposition of the velocity into a gradient
of a potential plus a rotational component, Equation (7), is adopted. The conservation of
mass is still given by Equation (9). The right hand side represents distributed sources to
account for the displacement e�ects of the boundary layer on the outer inviscid �ow �eld.
The representations of the pressure and density given in Equations (11) and (12) are still
valid. Hence, the only di�erence between the viscous and the inviscid �ow calculations are
in the momentum equations, which contain now viscous stresses. The latter increase the order
of the equation and require the enforcement of the no slip boundary condition in addition to
the no penetration condition. In general, conserving the two components of the momentum
provides two coupled equations for the two remaining unknowns, the entropy and the rotational
velocity component. The strategy for obtaining the corrections to the potential �eld due to
entropy and vorticity inside the viscous layer di�ers, however, from that used in the inviscid
�ow region. The normal momentum equation is integrated to obtain the pressure marching
from the inviscid �ow inward to the surface. The tangential momentum equation is used to
update the rotational component. For separated �ows, the momentum equations, tangential and
normal to the body, are used instead. A uni�ed strategy for both inviscid and viscous �ows
is possible if the two momentum equations are solved simultaneously in a coupled manner.
At any rate, the formulation is equivalent to Navier–Stokes equations for both attached and
separated �ows.

4. NUMERICAL METHODS AND NUMERICAL RESULTS

Standard numerical methods are used to test the present formulation. First, a �ne grid is gen-
erated around NACA0012 airfoil based on simple algebraic methods (The results for inviscid
�ows over a cylinder are reported in Reference [29].) A cell vertex, �nite volume scheme is
adopted for discretization. Arti�cial viscosity is added explicitly for numerical stability. Arti-
�cial time dependent terms and successive line relaxation procedures are parts of the iterative
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solution algorithm. The segregated treatment of the potential equation and the convection dif-
fusion equations for entropy and the rotational velocity component is chosen for simplicity.
All the results reported here reached a maximum residual of at least 10−8. Obviously, more
powerful techniques are applicable and such a study will be the subject of a separate paper.
Numerical results of some benchmark problems are reported for both inviscid and viscous
transonic aerodynamic �ows. Four cases are presented for NACA0012 airfoil at M∞=0:85
and �=1◦, M∞=0:86 and �=0◦, and M∞=1:4 for �=0 and 4◦. All these cases have
curved shocks generating entropy and vorticity in limited domains. The pressure contours are
plotted in Figures 1–12. The surface pressure distributions of isentropic irrotational and non-
isentropic rotational �ows are compared in Figures 3, 4 and 11, 12. All these solutions are
in good agreement with published results available in literature [3].
For viscous �ows, several cases are considered. Laminar �ows of Re=500 over NACA0012

airfoil at �=0; 10◦ and M∞=0:8; 0:9 are simulated with the present formulation and the
results are plotted in Figures 13–24. Higher Reynolds number cases are presented in Figures
25–30 for M∞=0:85, �=0◦ and Re=2000 and for M∞=0:5, �=0◦ and Re=10000. A
supersonic case is also simulated for M∞=1:5, �=0◦ and Re=10000 and the results are
shown in Figures 31–34. Two pressure distributions at the axis are plotted in Figure 33 for
coupling potential and rotational �ows with the viscous layer. The skin friction for the latter
is plotted in Figure 34. The same cases are calculated using standard formulations of Navier–
Stokes equations (see References [10, 30–32]). Again, our solutions are in good agreement
with the published results.

5. CONCLUDING REMARKS

Alternative formulations to the standard Euler and Navier–Stokes equations can be based on
generalized Cauchy=Riemann equations [9–12], stream functions [33, 34], or potential func-
tions with corrections to account for rotational �ow �elds. In this paper, numerical results are
presented based on a hierarchical approach, with the potential �ow solver as a base for both
inviscid and viscous �ows. Test cases with subsonic, transonic and supersonic free streams are
considered. The solutions are in good agreement with the results available in literature. Exten-
sions to turbulent �ows and massive separation cases will depend on transition and turbulence
modelling. The latter is an independent ingredient, necessary for any formulation. Standard
numerical techniques have been used in the present study, which are amenable for parallel
computations. More powerful procedures are, however, applicable to both the base potential
�ow solver, and the entropy and vorticity corrections. The extension to three-dimensional
�ows over wings is currently under development.

APPENDIX A: KUTTA–JOUKOWSKI CONDITION FOR THE SOLUTION OF THE
POTENTIAL EQUATION

For potential �ow calculations, Kutta–Joukowski condition is imposed to prevent the �ow from
going around the trailing edge. To guarantee that the pressure is continuous, �s (upwinded)
is enforced to be equal at both sides of the trailing edge. The jump of the potential at the
trailing edge is also enforced along the cut all the way to the outer boundary. Moreover, since
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Figure A1. U contours Re=500, �=10◦).
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Figure A2. Cp on the body (M∞=0:0; 0:1; 0:2, Re=500, �=10◦).

the jump of the potential is equal to the circulation in this case, it is used to calculate the
far-�eld boundary condition. The same strategy is used for the calculations of the potential
equation with the vorticity correction for both inviscid and viscous �ows. Unlike potential
�ows, inviscid rotational �ows leave the airfoil surface tangent to the side of lower entropy
because of the vorticity correction. At any rate, the circulation in the far-�eld is related to
the total lift according to Joukowski theorem, even for massively separated �ows, provided
that the contour used for the evaluation of the circulation is chosen to be perpendicular to the
vortical wake.
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APPENDIX B: THE INCOMPRESSIBLE FLOW LIMIT

The present formulation has already a built-in preconditioning for the simulation of low Mach
number �ows. For the case with no heat transfer, the density remains constant as M∞ → 0.
The energy equation decouples and the vorticity component of the velocity is obtained, as
before, from the tangential momentum equation. The pressure is calculated from the nor-
mal momentum equation and the entropy is not needed in such a procedure. Numerical re-
sults are obtained for NACA0012 airfoil at M∞=0:0; 0:1; 0:2 with �=10◦ and Re=500. In
Figures A1 and A2, the u-velocity contours and the surface pressure distributions are plotted
for the three cases. The same rate of convergence was observed for incompressible and com-
pressible �ows. Moreover, no degeneration of accuracy is noticed for the incompressible �ow
case.
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